Computational Modelling Group

Dr. Moresh J. Wankhede

Position
Alumnus
Institution
Dacolt International B.V.
E-mail
Moresh.Wankhede@soton.ac.uk
E-mail
moreshwankhede@asme.org
Contact
Complete this online contact form to contact Moresh.

Personal:

I completed my Ph.D. degree in combustor design and optimisation at the Rolls-Royce UTC for Computational Engineering,University of Southampton in January 2012. Before this I obtained my MSc in Aerodynamics and Computation also at University of Southampton (2008) and my BEng degree in Mechanical Engineering at Sardar Patel College of Engineering, University of Mumbai (2006), India.

Member of:

  • American Society of Mechanical Engineers (ASME)
  • Royal Aeronautical Society (RAeS)

Interests:

  • Aerodynamics
  • Aerothermodynamics
  • Aeroacoustics
  • Computational fluid dynamics
  • Optimisation methodologies and applications
  • Temporal domain decomposition
  • Parallel computing techniques

Peer-reviewed publications

  1. M. J. Wankhede, N. W. Bressloff, A. J. Keane, L. Caracciolo, and M. Zedda, 2010, "An analysis of unstable flow dynamics and flashback mechanism inside a swirl-stabilized lean burn combustor", GT2010-22253, Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air, Glasgow, UK (ISBN: 978-0-7918-4397-0, DOI: 10.1115/GT2010-22253)

  2. M. J. Wankhede, N. W. Bressloff, A. J. Keane, 2011, “Combustor design optimisation using co- Kriging of time-dependent turbulent combustion”, GT2011-46420, Proceedings of ASME Turbo Expo 2011, Vancouver, Canada

  3. M. J. Wankhede, N. W. Bressloff, A. J. Keane, 2011, “Combustor design optimisation using co- Kriging of time-dependent turbulent combustion”, GTP-11-1113, Journal of Engineering for Gas Turbines and Power, 133 (12),(DOI:10.1115/1.4004155)

  4. M. J. Wankhede, N. W. Bressloff, A. J. Keane, 2012, “A time-parallel CFD approach for unsteady combustor flow analysis and design optimisation", GT2012-68164, Proceedings of ASME Turbo Expo 2012, Copenhagen, Denmark

  5. M. J. Wankhede, N. W. Bressloff, A. J. Keane, 2012, “Time-parallel co-Kriging based multifidelity strategy for combustor design optimisation”, for Computational Optimization and Applications (Under preparation)

  6. M. J. Wankhede, N. W. Bressloff, A. J. Keane, 2012, “Multi-fidelity design optimisation of a combustor using co-Kriging of varying spatio-temporal combustion dynamics”, for Computational Optimization and Applications (Under preparation)


Other publications (Posters/Seminars)

  1. M. J. Wankhede, N. W. Bressloff, A. J. Keane, M. Zedda, 2009, “An analysis of precessing vortex core inside a lean burn combustor”, in Annual CFD Review, Rolls-Royce PLC., UK

  2. M. J. Wankhede, N. W. Bressloff, A. J. Keane, M. Zedda, 2010, “Development of co-Kriging based design optimisation methodology for a lean burn combustor”, in 8th Aerodynamic Design Optimisation Seminar (ADOS 2010), Rolls-Royce PLC., UK 

  3. M. J. Wankhede, N. W. Bressloff, A. J. Keane, M. Zedda, 2011, “Multi-fidelity strategies for combustor design using co-Kriging of spatio-temporal combustion dynamics”, in 9th Aerodynamic Design Optimisation Seminar (ADOS 2011), Rolls-Royce PLC., Derby, UK

  4. M. J. Wankhede, N. W. Bressloff, A. J. Keane, M. Zedda, 2011, “A time-parallel CFD simulation of unsteady combustor flow – method and challenges”, Annual CFD Review, Rolls-Royce PLC., UK


Awards:

  • 2011: American Society of Mechanical Engineer's International Gas Turbine Institute Scholarship Award worth 2000 USD for Ph.D. Research Work

  • 2008: Rolls-Royce Dorothy Hodgkin Post-Graduate Research Award (DHPA) worth 90,000 GBP for pursuing doctoral research at Rolls-Royce UTC for Computational Engineering, University of Southampton

  • 2008: University of Southampton best M.Sc. Aerodynamics and Computation thesis award worth 100 GBP

  • 2007: University of Southampton Lanchester Scholarship Award worth 1500 GBP for pursuing M.Sc. studies

Working with...

Neil Bressloff
Professor, Engineering Sciences (FEE)
Andy Keane
Professor, Engineering Sciences (FEE)

Gallery

Flame-Vortex Interaction: Evolution of a humming instability cycle over time inside a 2D lean burn combustor captured using URANS

Comparison of 2D humming instability cycle captured using URANS simulation against experimental data

Precessing vortex core (PVC) instability structure inside a lean burn fuel injector

Burnt mixture inside a lean burn combustor after PVC supression

A lean burn combustor flow-field showing precessing vortex core (PVC) and downstream recirculation flow zone (RFZ)