Computational Modelling Group

Multi-core

For queries about this topic, contact Jess Jones.

View the calendar of events relating to this topic.

Projects

A novel approach to analysing fixed points in complex systems

James Dyke (Investigator), Iain Weaver

This work aims to contribute to our understanding of the relationship between complexity and stability. By describing an abstract coupled life-environment model, we are able to employ novel analytical, and computational techniques to shed light on the properties of such a system.

Automatic Image Retrieval with Soft Biometrics for Surveillance

Mark Nixon, John Carter (Investigators), Daniel Martinho-Corbishley

We're investigating ways to automatically describe and identify pedestrians from surveillance footage using human understandable, soft biometric labels. Our goal is to enable surveillance operators to search for pedestrians in a video network using soft biometric descriptions, and to automatically retrieve these descriptions from CCTV images.

Body Forces in Particle Suspensions in Turbulence

Gabriel Amine-Eddine (Investigator), John Shrimpton

The behaviour of multiphase flows is of primary importance in many engineering applications. In the past, experimental observations have provided many researchers with the ability to understand and probe the phenomena and physical processes occurring in such flows. With advancements in modern day computational power, we now have the ability to gain an even greater wealth of knowledge, from what used to be a physical experiment, is now a virtual simulation.

Amine-Eddine, G.H. (2015) Body forces in particle suspensions in turbulence. University of Southampton, Faculty of Engineering and the Environment, Doctoral Thesis , 283pp.

Centre for Doctoral Training in Next Generation Computational Modelling

Hans Fangohr, Ian Hawke, Peter Horak (Investigators), Susanne Ufermann Fangohr, Ryan Pepper, Hossam Ragheb, Emanuele Zappia, Ashley Setter, David Lusher, Alvaro Perez-Diaz, Kieran Selvon, Thorsten Wittemeier, Mihails Milehins, Stephen Gow, Ioannis Begleris, Jonathon Waters, James Harrison, Joshua Greenhalgh, Rory Brown, Robert Entwistle, Paul Chambers, Jan Kamenik, Craig Rafter

The £10million Centre for Doctoral Training was launched in November 2013 and is jointly funded by EPSRC, the University of Southampton, and its partners.

The NGCM brings together world-class simulation modelling research activities from across the University of Southampton and hosts a 4-year doctoral training programme that is the first of its kind in the UK.

Challenging Topological Prejudice - Automated Airframe Layout Design

Andras Sobester (Investigator), Paul Chambers

Aircraft preliminary design scopes are drastically narrowed by topological prejudice. Modern aircraft have settled on the same 'tube plus wing and cruciform tail' type topology that has been adopted through their ancestry, with no scientific evidence that this layout is optimal. This research project poses the question:

“Given a topologically flexible aircraft geometry that is free of prejudice or bias, would a sophisticated multi-disciplinary optimization process yield a conventional layout?”

Complexity in Modelling Electric Marine Propulsive Devices

Suleiman Sharkh, Neil Bressloff, Hans Fangohr (Investigators), Aleksander Dubas

This project involves the simulation of turbulent flow around a marine rim-driven thruster and the complex interaction of flow features involved through computational fluid dynamics. Following this, the optimisation of design parameters using computational fluid dynamics to calculate the objective function is performed and surrogate modelling utilised to estimate optimum design configuration.

Deep Optimisation

Jamie Caldwell

The project will develop the implementation and application of a new optimisation technique. 'Deep optimisation' combines deep learning techniques in neural networks with distributed optimisation methods to create a dynamically re-scalable optimisation process. This project will develop this technique to better-understand its capabilities and limitations and develop GPU implementations. The protein structure prediction problem will be used as the main test application.

Desiging Near-Capacity Quantum Error Correction Codes

Lajos Hanzo (Investigator), Zunaira Babar

Design efficient quantum error correction codes to correct the errors encountered in a quantum transmission; thus, increasing reliability and robustness of the future quantum systems.

Development of a novel Navier-Stokes solver (HiPSTAR)

Richard Sandberg (Investigator)

Development of a highly efficient Navier-Stokes solver for HPC.

Direct Numerical Simulations of transsonic turbine tip gap flow

Richard Sandberg (Investigator)

Direct Numerical Simulations are conducted of the transsonic flow through the tip gap at real engine conditions.

Fluid Dynamics Optimisation of Rim-Drive Thrusters and Ducted Hydrokinetic Generators

Aleksander Dubas, Suleiman Sharkh (Investigators)

This is a Knowledge Transfer Partnership project is a collaboration between the University of Southampton and TSL Technology Ltd. to develop computational fluid dynamics software design tools for modelling and optimising the design of propeller thrusters and water turbine generators.

How sensitive is ocean model utility to resolution?

Kevin Oliver (Investigator), Maike Sonnewald

One of the most intriguing problems in recent ocean modeling research is the impact of varying model resolution on model accuracy. Increasing model resolution one includes more of the important processes. However, the increase in accuracy with resolution is unlikely to be linear. Thus, as computational cost increases with resolution, a critical assessment of achieved benefits is prudent. Here we analyse a suite of realistic and compatible global ocean model runs from coarse (1o, ORCA1), eddy-permitting (1/4o, ORCA025) and eddy resolving (1/12o, ORCA12) resolutions. Comparisons of steric height variability (varSH) highlight changes in ocean density structure, revealing impacts on mechanisms such as downwelling and eddy energy dissipation. We assess vertical variability using the covariace of the deep and shallow varSH. Together with assessing isopycnal movements, we demonstrate the influence of deep baroclinic modes and regions where the barotropic flow sheds eddies. Significant changes in the deepwater formation and dispersion both in the Arctic and Antarctic are found between resolutions. The varSH increased from ORCA1 to ORCA025 and ORCA12, particularily in the Southern Ocean and Western Boundary Currents. However, there is no significant covariance between the surface and deep in ORCA1, while ORCA025 and ORCA12 show significant covariance, implying an important missing energy pathway in ORCA1. Comparing ORCA025 and ORCA12 we see significant differences in eddy energy dissipation. We assess the impact of varying model resolution on the mean flow, discussing implications to dissipation pathways on model accuracy, with reference to stochastic parameterisation schemes.

Multiscale Modelling of Cellular Calcium Signalling

Hans Fangohr, Jonathan Essex (Investigators), Dan Mason

Calcium ions play a vitally important role in signal transduction and are key to many cellular processes including muscle contraction and cell apoptosis (cell death). This importance has made calcium an active area in biomedical science and mathematical modelling.

Porous Media and Hydrothermal Circulation in Weakened Ocean Crust

Formation of oceanic crust is an interplay between magma and the cooling hydrothermal system above that its own heat drives. To understand this system we must understand where and how water circulates through the crust.

Ocean crust is riddled with faults and other permeable pathways along which water preferentially flows. We seek to use basic numerical models of circulation in porous media to understand how much of an influence on crust formation these anomalous features have, compared to the bulk, unfractured crust.

Precision study of critical slowing down in lattice simulations of the CP^{N-1} model

Jonathan Flynn, Andreas Juttner (Investigators), Andrew Lawson

This project involves the study of critical slowing down (CSD): a property that may arise when taking measurements in Monte Carlo simulations. In order to study and quantify this phenomenon we have performed extensive simulations of the CP^{N-1} model. By studying the properties of the Monte Carlo algorithms in this model, we hope to make algorithmic improvements that can then be employed in simulations of physical quantum field theories, such as in lattice quantum chromodynamics (lattice QCD).

pyQCD

Matthew Spraggs

A basic Python package to perform coarse lattice QCD simulations on desktop and workstation computers.

SAVE: Solent Achieving Value through Efficiency

Patrick James, Ben Anderson (Investigators), Luke Blunden

Analysis of 15 minute electricity consumption and 10 second instantaneous power data from 4,000+ households in the Solent region collected over 3 years of a randomised control trial study.

Supernova Rates in the Local Universe

Mark Sullivan (Investigator), Christopher Frohmaier

This project will calculate the frequency of exploding stars -- or supernovae -- in the nearby universe. We simulate a 'toy universe' by exploding billions of stars in a computer, and then artificially 'observing' these explosions by replicating a real astronomical sky survey, the Palomar Transient Factory (PTF). The results of this simulation allows us to discover the rate at which supernovae occur in the local universe each year.

The Maximum Entropy Production Principle and Natural Convection

Seth Bullock, James Dyke (Investigators), Stuart Bartlett

In this project I wanted to perform some tests of the so-called Maximum Entropy Production Principle (MEPP) in the context of buoyancy-driven convection in a system with negative feedback boundary conditions.

Today's Computation Enabling Tomorrow's Seamless Communication

Lajos Hanzo (Investigator), Varghese Thomas

Radio Over Fibre (ROF) is a communication technique that aims to gainfully amalgamate the benefits of optical and wireless communication, while keeping the system cost low. This technique would support the next generation of wireless services.

Vortices in Spinor Bose-Einstein Condensates

Janne Ruostekoski (Investigator), Justin Lovegrove

We numerically study the effect of spin degrees of freedom on the structure of a vortex in an atomic superfluid. Such objects are of interest as macroscopic examples of quantum phenomena, as well as for their analogies in other fields, such as cosmology and high energy physics.

People

Neil Bressloff
Professor, Engineering Sciences (FEE)
Seth Bullock
Professor, Electronics and Computer Science (FPAS)
Jonathan Essex
Professor, Chemistry (FNES)
Hans Fangohr
Professor, Engineering Sciences (FEE)
Jonathan Flynn
Professor, Physics & Astronomy (FPAS)
Lajos Hanzo
Professor, Electronics and Computer Science (FPAS)
Mark Nixon
Professor, Electronics and Computer Science (FPAS)
Janne Ruostekoski
Professor, Mathematics (FSHS)
Richard Sandberg
Professor, Engineering Sciences (FEE)
John Shrimpton
Professor, Engineering Sciences (FEE)
Peter Horak
Reader, Optoelectronics Research Centre
John Carter
Senior Lecturer, Electronics and Computer Science (FPAS)
Patrick James
Senior Lecturer, Civil Engineering & the Environment (FEE)
Suleiman Sharkh
Senior Lecturer, Engineering Sciences (FEE)
James Dyke
Lecturer, Electronics and Computer Science (FPAS)
Ian Hawke
Lecturer, Mathematics (FSHS)
Kevin Oliver
Lecturer, National Oceanography Centre (FNES)
Andras Sobester
Lecturer, Engineering Sciences (FEE)
Mark Sullivan
Principal Research Fellow, Physics & Astronomy (FPAS)
Ben Anderson
Senior Research Fellow, Civil Engineering & the Environment (FEE)
Andreas Juttner
Senior Research Fellow, Physics & Astronomy (FPAS)
Luke Blunden
Research Fellow, Civil Engineering & the Environment (FEE)
Nicola De Tullio
Research Fellow, Engineering Sciences (FEE)
Aleksander Dubas
Research Fellow, Engineering Sciences (FEE)
Mathis Hain
Research Fellow, Ocean & Earth Science (FNES)
Gabriel Amine-Eddine
Postgraduate Research Student, Engineering Sciences (FEE)
Stuart Bartlett
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Patrick Bechlars
Postgraduate Research Student, Engineering Sciences (FEE)
Ioannis Begleris
Postgraduate Research Student, Engineering Sciences (FEE)
Rory Brown
Postgraduate Research Student, Civil Engineering & the Environment (FEE)
Jamie Caldwell
Postgraduate Research Student, Engineering Sciences (FEE)
Paul Chambers
Postgraduate Research Student, Engineering Sciences (FEE)
Robert Entwistle
Postgraduate Research Student, Engineering Sciences (FEE)
Christopher Frohmaier
Postgraduate Research Student, Physics & Astronomy (FPAS)
Stephen Gow
Postgraduate Research Student, Engineering Sciences (FEE)
Joshua Greenhalgh
Postgraduate Research Student, Engineering Sciences (FEE)
James Harrison
Postgraduate Research Student, Engineering Sciences (FEE)
Nicholas Hill
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Jan Kamenik
Postgraduate Research Student, Engineering Sciences (FEE)
Andrew Lawson
Postgraduate Research Student, Physics & Astronomy (FPAS)
Justin Lovegrove
Postgraduate Research Student, Mathematics (FSHS)
David Lusher
Postgraduate Research Student, Engineering Sciences (FEE)
Sam Mangham
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Juraj Mihalik
Postgraduate Research Student, Engineering Sciences (FEE)
Alvaro Perez-Diaz
Postgraduate Research Student, Engineering Sciences (FEE)
Richard Pichler
Postgraduate Research Student, Civil Engineering & the Environment (FEE)
Craig Rafter
Postgraduate Research Student, Engineering Sciences (FEE)
Hossam Ragheb
Postgraduate Research Student, Engineering Sciences (FEE)
Kieran Selvon
Postgraduate Research Student, Engineering Sciences (FEE)
Ashley Setter
Postgraduate Research Student, Engineering Sciences (FEE)
Maike Sonnewald
Postgraduate Research Student, National Oceanography Centre (FNES)
Matthew Spraggs
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Valerio Vitale
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Jonathon Waters
Postgraduate Research Student, Engineering Sciences (FEE)
Iain Weaver
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Thorsten Wittemeier
Postgraduate Research Student, Engineering Sciences (FEE)
Emanuele Zappia
Postgraduate Research Student, Engineering Sciences (FEE)
Jess Jones
Technical Staff, iSolutions
Susanne Ufermann Fangohr
Administrative Staff, Civil Engineering & the Environment (FEE)
Arthur Lugtigheid
Alumnus, Psychology (FSHS)
Dan Mason
Alumnus, University of Southampton
Mihails Milehins
Alumnus, University of Southampton
Zunaira Babar
None, None
Varghese Thomas
None, None
Sheng Yang
None, None