Computational Modelling Group

CVS

CVS is a simple revision control system for managing large projects. Freely available and robust - included as standard in typical Linux and Mac distributions, and a standard Windows implementation would be TortoiseCVS. Alternatives with some advantages include subversion, git, or Mercurial.

For queries about this topic, contact Ian Hawke.

View the calendar of events relating to this topic.

Projects

BioSimGrid

Jonathan Essex, Hans Fangohr (Investigators), Richard Boardman, Syma Khalid, Steven Johnston

The aim of the BioSimGrid project is to make the results of large-scale computer simulations of biomolecules more accessible to the biological community. Such simulations of the motions of proteins are a key component in understanding how the structure of a protein is related to its dynamic function.

Development of a novel Navier-Stokes solver (HiPSTAR)

Richard Sandberg (Investigator)

Development of a highly efficient Navier-Stokes solver for HPC.

Direct Numerical Simulations of transsonic turbine tip gap flow

Richard Sandberg (Investigator)

Direct Numerical Simulations are conducted of the transsonic flow through the tip gap at real engine conditions.

Gravitational waves from neutron stars

Ian Hawke (Investigator)

Gravitational waves, once detected, will give information about the extremes of space and time. Compact objects such as neutron stars are perfect locations for generating such waves.

Hadronic structure on the computer

Jonathan Flynn (Investigator), Dirk Broemmel, Thomas Rae, Ben Samways

In experiments at the Large Hadron Collider (LHC) at CERN, Geneva, the interactions that occur between the colliding particles (protons in this case) can be factorised into a simple scattering between two constituent particles, called quarks, followed by a hadronisation process, which describes the dynamics of forming the bound proton states. Quarks are particles within the proton that bind to form composite particles (hadrons) such as a proton. The scattering process can be computed relatively easily, but hadronisation is intrinsically non-perturbative and hard to calculate. Lattice QCD (computer simulation of QCD on a discrete space-time lattice) provides our only known first-principles and systematically-improvable method to address problems like hadronisation. This project uses Iridis to extract parton distribution amplitudes which are experimentally inaccessible, but needed to describe the quark structure of hadrons.

Is fine-scale turbulence universal?

Richard Sandberg (Investigator), Patrick Bechlars

Complementary numerical simulations and experiments of various canonical flows will try to answer the question whether fine-scale turbulence is universal.

Jet noise

Richard Sandberg (Investigator), Neil Sandham

Direct numerical simulations are used to investigate jet noise.

Kaon to two pion decays in lattice QCD

Jonathan Flynn (Investigator), Elaine Goode, Dirk Broemmel

We calculate kaon decay amplitudes on the lattice so we may compare the Standard Model to experiment.

Non-Perturbative Renormalisation on the Lattice

Jonathan Flynn (Investigator), Dirk Broemmel, Thomas Rae

In this project we compute renormalisation factors for various physical observables in a non-perturbative lattice framework. Renormalisation hereby arises due to a fundamental scale dependence of the physical processes.

Supersonic axisymmetric wakes

Richard Sandberg (Investigator)

Direct numerical simulations are used to shed more light on structure formation and evolution in supersonic wakes.

Test and Rest

Hans Fangohr (Investigator), Evander DaCosta, James Graham, Oliver Laslett

Regression and system testing, automatic execution of testing - establishing best practice.

The ONETEP project

Chris-Kriton Skylaris (Investigator), Stephen Fox, Chris Pittock, Álvaro Ruiz-Serrano, Jacek Dziedzic

Program for large-scale quantum mechanical simulations of matter from first principles quantum mechanics. Based on theory and algorithms we have developed for linear-scaling density functional theory calculations on parallel computers.

Wave-based discontinuous Galerkin methods

Gwenael Gabard (Investigator), Greg Kennedy

Wave-based computational methods are developed to model sound propagation in moving inhomogeneous media.

Whisky Code

Ian Hawke (Investigator)

A 3D finite volume code for simulating compact relativistic hydrodynamics.

People

Jonathan Essex
Professor, Chemistry (FNES)
Hans Fangohr
Professor, Engineering Sciences (FEE)
Jonathan Flynn
Professor, Physics & Astronomy (FPAS)
Carsten Gundlach
Professor, Mathematics (FSHS)
Richard Sandberg
Professor, Engineering Sciences (FEE)
Neil Sandham
Professor, Engineering Sciences (FEE)
Nicolas Green
Reader, Electronics and Computer Science (FPAS)
Gwenael Gabard
Lecturer, Institute of Sound & Vibration Research (FEE)
Ian Hawke
Lecturer, Mathematics (FSHS)
Chris-Kriton Skylaris
Lecturer, Chemistry (FNES)
Syma Khalid
Principal Research Fellow, Chemistry (FNES)
Richard Boardman
Senior Research Fellow, Engineering Sciences (FEE)
Dirk Broemmel
Research Fellow, Physics & Astronomy (FPAS)
Jacek Dziedzic
Research Fellow, Chemistry (FNES)
Steven Johnston
Research Fellow, Engineering Sciences (FEE)
Jordi Arranz
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Patrick Bechlars
Postgraduate Research Student, Engineering Sciences (FEE)
Evander DaCosta
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Stephen Fox
Postgraduate Research Student, Chemistry (FNES)
Elaine Goode
Postgraduate Research Student, Physics & Astronomy (FPAS)
James Graham
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Greg Kennedy
Postgraduate Research Student, Institute of Sound & Vibration Research (FEE)
Oliver Laslett
Postgraduate Research Student, Civil Engineering & the Environment (FEE)
Chris Pittock
Postgraduate Research Student, Chemistry (FNES)
David Potts
Postgraduate Research Student, Humanities (FH)
Thomas Rae
Postgraduate Research Student, Physics & Astronomy (FPAS)
Álvaro Ruiz-Serrano
Postgraduate Research Student, Chemistry (FNES)
Ben Samways
Postgraduate Research Student, Physics & Astronomy (FPAS)
Matthew Higgins
Undergraduate Research Student, Biological Sciences (FNES)
Jess Jones
Technical Staff, iSolutions
Petrina Butler
Administrative Staff, Research and Innovation Services
Gunnar Mallon
Alumnus, Geography (FSHS)
Ian Bush
External Member, NAG Ltd, Oxford