Computational Modelling Group

Mercurial

Mercurial is a cross-platform, distributed revision control tool for software developers. It is mainly implemented using the Python programming language, but includes a binary diff implementation written in C.

Mercurial is primarily a command line program but graphical user interface extensions are available. All of Mercurial's operations are invoked as keyword options to its driver program hg, a reference to the chemical symbol of the element mercury.

Mercurial's major design goals include high performance and scalability, decentralized, fully distributed collaborative development, robust handling of both plain text and binary files, and advanced branching and merging capabilities, while remaining conceptually simple. It includes an integrated web interface. (Read more from Wikipedia.

For queries about this topic, contact Hans Fangohr.

View the calendar of events relating to this topic.

Projects

Centre for Doctoral Training in Next Generation Computational Modelling

Hans Fangohr, Ian Hawke, Peter Horak (Investigators), Susanne Ufermann Fangohr, Ryan Pepper, Hossam Ragheb, Emanuele Zappia, Ashley Setter, David Lusher, Alvaro Perez-Diaz, Kieran Selvon, Thorsten Wittemeier, Mihails Milehins, Stephen Gow, Ioannis Begleris, Jonathon Waters, James Harrison, Joshua Greenhalgh, Rory Brown, Robert Entwistle, Paul Chambers, Jan Kamenik, Craig Rafter

The £10million Centre for Doctoral Training was launched in November 2013 and is jointly funded by EPSRC, the University of Southampton, and its partners.

The NGCM brings together world-class simulation modelling research activities from across the University of Southampton and hosts a 4-year doctoral training programme that is the first of its kind in the UK.

Chaotic Analysis of Partial Discharge

Paul Lewin (Investigator), Lyuboslav Petrov

The deterministic character of PD pulses predicted by theory has been shown to be existent for certain PD events. Finding characteristic patterns in phase space enables field-data PD detection with high reliability.

Complexity in Modelling Electric Marine Propulsive Devices

Suleiman Sharkh, Neil Bressloff, Hans Fangohr (Investigators), Aleksander Dubas

This project involves the simulation of turbulent flow around a marine rim-driven thruster and the complex interaction of flow features involved through computational fluid dynamics. Following this, the optimisation of design parameters using computational fluid dynamics to calculate the objective function is performed and surrogate modelling utilised to estimate optimum design configuration.

CRISIS – Complexity Research Initiative for Systemic InstabilitieS

Frank McGroarty (Investigator), Bob De Caux

A new approach to modelling and understanding financial system and macroeconomic risk and instability

Designer 3D Magnetic Mesostructures

Hans Fangohr (Investigator), Matteo Franchin, Andreas Knittel

A new electrodeposition self-assembly method allows for the growth of well defined mesostructures. This project's aim is to use this method in order to fabricate supraconducting and ferromagnetic mesostructures. Numerical methods based on well-established models are used in order to characterise the grown structures.

Directing magnetic skyrmion traffic flow with nanoscale patterning.

Hans Fangohr, Ondrej Hovorka (Investigators), Mark Vousden

Skyrmions in magnetic nanostructures may lead to new data storage technologies. Appropriate simulation methodologies are developed and applied.

Fluid Dynamics Optimisation of Rim-Drive Thrusters and Ducted Hydrokinetic Generators

Aleksander Dubas, Suleiman Sharkh (Investigators)

This is a Knowledge Transfer Partnership project is a collaboration between the University of Southampton and TSL Technology Ltd. to develop computational fluid dynamics software design tools for modelling and optimising the design of propeller thrusters and water turbine generators.

Magnetic dynamics under the Landau-Lifshitz-Baryakhtar equation

Hans Fangohr (Investigator), Weiwei Wang

Magnetic dynamics using the Landau-Lifshitz-Baryakhtar (LLBar) equation that the nonlocal damping is included as well as the scalar Gilbert damping.

Magnon-Driven Domain-Wall Dynamics in the presence of Dzyaloshinskii-Moriya Interaction

Hans Fangohr (Investigator), Weiwei Wang

The domain wall motion induced by spin waves (magnons) in the presence of Dzyaloshinskii-Moriya Interaction is studied in this project.

Multiscale Modelling of Cellular Calcium Signalling

Hans Fangohr, Jonathan Essex (Investigators), Dan Mason

Calcium ions play a vitally important role in signal transduction and are key to many cellular processes including muscle contraction and cell apoptosis (cell death). This importance has made calcium an active area in biomedical science and mathematical modelling.

Nmag - computational micromagnetics

Hans Fangohr, Thomas Fischbacher (Investigators), Matteo Franchin, Andreas Knittel, Maximilian Albert, Dmitri Chernyshenko, Massoud Najafi, Richard Boardman

Nmag is a micromagnetic simulation package based on the general purpose multi-physics library nsim. It is developed by the group of Hans Fangohr and Thomas Fischbacher in the School of Engineering Sciences at the University of Southampton and released under the GNU GPL.

Numerical investigation of the true sources of jet noise

Anurag Agarwal (Investigator), Samuel Sinayoko

Aircraft noise severely impacts the quality of life of people living close to airports. Noise generation by aircrafts is especially large during take-off. Jet noise is the dominant noise source during take-off. It is produced by the high speed flow generated by the engine. However, the actual source of sound remains unknown. A deeper understanding of the sources of jet noise is need to be able to reduce the noise. The aim of this project is to implement a innovative method that would allow to identify the sources of jet noise.

On the applicability of nonlinear timeseries methods for partial discharge analysis

Paul Lewin (Investigator), Lyuboslav Petrov

The governing processes of Partial Discharge (PD)
phenomena trigger aperiodic chains of events resulting in ’ap-
parently’ stochastic data, for which the widely adopted analysis
methodology is of statistical nature. However, it can be shown,
that nonlinear analysis methods can prove more adequate in
detecting certain trends and patterns in complex PD timeseries.
In this work, the application of nonlinear invariants and phase
space methods for PD analysis are discussed and potential pitfalls
are identified. Unsupervised statistical inference techniques based
on the use of surrogate data sets are proposed and employed for
the purpose of testing the applicability of nonlinear algorithms
and methods. The Generalized Hurst Exponent and Lempel Ziv
Complexity are used for finding the location of the system under
test on the spectrum between determinism and stochasticity. The
algorithms are found to have strong classification abilities at
discerning between surrogates and original point series, giving
motivation for further investigations.

Pushing the Envelope of Planetary Formation and Evolution Simulations

Peter Bartram

A full understanding of the formation and the early evolution of the Solar System and extrasolar planetary systems ranks among natural science's grand challenges, and at present, even the dominant processes responsible for generating the observed planetary architecture remain elusive.

Skyrmionic states in confined helimagnetic nanostructures

Hans Fangohr (Investigator), Marijan Beg

An ever increasing need for data storage creates great challenges for the development of high-capacity storage devices that are cheap, fast, reliable, and robust. Because of the fundamental constraints of today's technologies, further progress requires radically different approaches. Magnetic skyrmions are very promising candidates for the development of future low-power, high-capacity, non-volatile data storage devices.

Software Sustainability Institute

Simon Hettrick (Investigator)

A national facility for cultivating world-class research through software

Software helps researchers to enhance their research, and improve the speed and accuracy of their results. The Software Sustainability Institute can help you introduce software into your research or improve the software you already use.

The Institute is based at the universities of Edinburgh, Manchester, Oxford and Southampton, and draws on a team of experts with a breadth of experience in software development, project and programme management, research facilitation, publicity and community engagement.

We help people build better software, and we work with researchers, developers, funders and infrastructure providers to identify key issues and best practice in scientific software.

Stability of chiral structures in magnetic nanodisks

Hans Fangohr, Weiwei Wang (Investigators), David Cortes

This project is aimed to study the stability of skyrmionic and helical equilibrium states in magnetic nanodisks, using computational simulations.

Test and Rest

Hans Fangohr (Investigator), Evander DaCosta, James Graham, Oliver Laslett

Regression and system testing, automatic execution of testing - establishing best practice.

Water molecules in drug development: can we predict drug affinity when water molecules are involved?

Jonathan Essex (Investigator), Hannah Bruce Macdonald, Christopher Cave-Ayland

Water molecules are often found to be involved in drug-protein binding and can influence the effectiveness of a drug. We aim to aid drug design by calculating the energies involved with complexes of drugs, proteins and water molecules to predict the affinities of drug molecules.

µ-VIS Computed Tomography Centre

Ian Sinclair, Richard Boardman, Dmitry Grinev, Philipp Thurner, Simon Cox, Jeremy Frey, Mark Spearing, Kenji Takeda (Investigators)

A dedicated centre for computed tomography (CT) at Southampton, providing complete support for 3D imaging science, serving Engineering, Biomedical, Environmental and Archaeological Sciences. The centre encompasses five complementary scanning systems supporting resolutions down to 200nm and imaging volumes in excess of one metre: from a matchstick to a tree trunk, from an ant's wing to a gas turbine blade.

People

Neil Bressloff
Professor, Engineering Sciences (FEE)
Simon Cox
Professor, Engineering Sciences (FEE)
Jonathan Essex
Professor, Chemistry (FNES)
Hans Fangohr
Professor, Engineering Sciences (FEE)
Jeremy Frey
Professor, Chemistry (FNES)
Paul Lewin
Professor, Electronics and Computer Science (FPAS)
Frank McGroarty
Professor, Management (FBL)
Suleiman Sharkh
Professor, Engineering Sciences (FEE)
Ian Sinclair
Professor, Engineering Sciences (FEE)
Mark Spearing
Professor, Engineering Sciences (FEE)
Graeme Day
Reader, Chemistry (FNES)
Peter Horak
Reader, Optoelectronics Research Centre
Gwenael Gabard
Lecturer, Institute of Sound & Vibration Research (FEE)
Ian Hawke
Lecturer, Mathematics (FSHS)
Ondrej Hovorka
Lecturer, Engineering Sciences (FEE)
Philipp Thurner
Lecturer, Engineering Sciences (FEE)
Richard Boardman
Senior Research Fellow, Engineering Sciences (FEE)
Marijan Beg
Research Fellow, Engineering Sciences (FEE)
Aleksander Dubas
Research Fellow, Engineering Sciences (FEE)
Dmitry Grinev
Research Fellow, Engineering Sciences (FEE)
Thomas Kluyver
Research Fellow, Engineering Sciences (FEE)
Maximilian Albert
Postgraduate Research Student, Engineering Sciences (FEE)
Peter Bartram
Postgraduate Research Student, University of Southampton
Ioannis Begleris
Postgraduate Research Student, Engineering Sciences (FEE)
Harry Beviss
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Rory Brown
Postgraduate Research Student, Civil Engineering & the Environment (FEE)
Hannah Bruce Macdonald
Postgraduate Research Student, Chemistry (FNES)
Christopher Cave-Ayland
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Paul Chambers
Postgraduate Research Student, Engineering Sciences (FEE)
David Cortes
Postgraduate Research Student, Engineering Sciences (FEE)
Evander DaCosta
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Bob De Caux
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Robert Entwistle
Postgraduate Research Student, Engineering Sciences (FEE)
Stephen Gow
Postgraduate Research Student, Engineering Sciences (FEE)
James Graham
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Joshua Greenhalgh
Postgraduate Research Student, Engineering Sciences (FEE)
James Harrison
Postgraduate Research Student, Engineering Sciences (FEE)
Jason Hilton
Postgraduate Research Student, Social Sciences (FSHS)
Jan Kamenik
Postgraduate Research Student, Engineering Sciences (FEE)
Oliver Laslett
Postgraduate Research Student, Civil Engineering & the Environment (FEE)
David Lusher
Postgraduate Research Student, Engineering Sciences (FEE)
Alvaro Perez-Diaz
Postgraduate Research Student, Engineering Sciences (FEE)
Lyuboslav Petrov
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Craig Rafter
Postgraduate Research Student, Engineering Sciences (FEE)
Hossam Ragheb
Postgraduate Research Student, Engineering Sciences (FEE)
Álvaro Ruiz-Serrano
Postgraduate Research Student, Chemistry (FNES)
Kieran Selvon
Postgraduate Research Student, Engineering Sciences (FEE)
Ashley Setter
Postgraduate Research Student, Engineering Sciences (FEE)
Mark Vousden
Postgraduate Research Student, Engineering Sciences (FEE)
Jonathon Waters
Postgraduate Research Student, Engineering Sciences (FEE)
Thorsten Wittemeier
Postgraduate Research Student, Engineering Sciences (FEE)
Emanuele Zappia
Postgraduate Research Student, Engineering Sciences (FEE)
Jess Jones
Technical Staff, iSolutions
Petrina Butler
Administrative Staff, Research and Innovation Services
Susanne Ufermann Fangohr
Administrative Staff, Civil Engineering & the Environment (FEE)
Anurag Agarwal
Alumnus, Institute of Sound & Vibration Research (FEE)
Stuart Curtis
Alumnus, University of Southampton
Thomas Fischbacher
Alumnus, Engineering Sciences (FEE)
Matteo Franchin
Alumnus, Engineering Sciences (FEE)
Andreas Knittel
Alumnus, Industry
Dan Mason
Alumnus, University of Southampton
Mihails Milehins
Alumnus, University of Southampton
Massoud Najafi
Alumnus, Arbeitsbereich Technische Informatik Systeme, University of Hamburg, Germany
Samuel Sinayoko
Alumnus, BMLL
Kenji Takeda
Alumnus, Engineering Sciences (FEE)
Weiwei Wang
Alumnus, Ningbo University
Daniel Pope
External Member, Mauve Internet Ltd.
Simon Hettrick
None, None
Sheng Yang
None, None