Emerald
For queries about this topic, contact Jess Jones.
View the calendar of events relating to this topic.
Projects
Development of a novel Navier-Stokes solver (HiPSTAR)
Richard Sandberg (Investigator)
Development of a highly efficient Navier-Stokes solver for HPC.
Effects of trailing edge elasticity on trailing edge noise
Richard Sandberg (Investigator), Stefan C. Schlanderer
This work considers the effect of trailing edge elasticity on the acoustic and hydrodynamic field of a trailing edge flow. To that end direct numerical simulations that are fully coupled to a structural solver are conducted.
Massively-Parallel Computational Fluid Dynamics
Simon Cox, Stephen Turnock, Alexander Phillips (Investigators), James Hawkes
Computational Fluid Dynamics (CFD) is a numerical method for modelling fluid flows and heat transfer - and is used in many industries. It can be used to model dynamics around aircraft, ships and land vehicles; and also has uses in engine design, architecture, weather forecasting, medicine, computer-generated imagery (CGI) and much more. To harness the full power of CFD, it is necessary to utilise the full power of modern supercomputers. This project aims to improve the scalabilty of existing CFD codes so that more complex problems can be tackled efficiently.
People
Professor, Engineering Sciences (FEE)
Professor, Engineering Sciences (FEE)
Professor, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Civil Engineering & the Environment (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Technical Staff, iSolutions
None, None