Spintronics
Spintronics, meaning "spin transport electronics", also known as magnetoelectronics, is an emerging technology that exploits the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. More from Wikipedia
Image courtesy of Dr Matteo Franchin.
For queries about this topic, contact Hans Fangohr.
View the calendar of events relating to this topic.
Projects
Centre for Doctoral Training in Next Generation Computational Modelling
Hans Fangohr, Ian Hawke, Peter Horak (Investigators), Susanne Ufermann Fangohr, Thorsten Wittemeier, Kieran Selvon, Alvaro Perez-Diaz, David Lusher, Ashley Setter, Emanuele Zappia, Hossam Ragheb, Ryan Pepper, Stephen Gow, Jan Kamenik, Paul Chambers, Robert Entwistle, Rory Brown, Joshua Greenhalgh, James Harrison, Jonathon Waters, Ioannis Begleris, Craig Rafter
The £10million Centre for Doctoral Training was launched in November 2013 and is jointly funded by EPSRC, the University of Southampton, and its partners.
The NGCM brings together world-class simulation modelling research activities from across the University of Southampton and hosts a 4-year doctoral training programme that is the first of its kind in the UK.
Magnon-Driven Domain-Wall Dynamics in the presence of Dzyaloshinskii-Moriya Interaction
Hans Fangohr (Investigator), Weiwei Wang
The domain wall motion induced by spin waves (magnons) in the presence of Dzyaloshinskii-Moriya Interaction is studied in this project.
Reversal of ferromagnetic nanotubes
Hans Fangohr (Investigator), David Cortes
We are analysing the feasibility of reversing a nano scaled magnetic tube by applying weak pulses of currents through the nano-tube inner core
Skyrmionic states in confined nanostructures
Hans Fangohr (Investigator), Marijan Beg
An ever increasing need for data storage creates great challenges for the development of high-capacity storage devices that are cheap, fast, reliable, and robust. Because of the fundamental constraints of today's technologies, further progress requires radically different approaches. Magnetic skyrmions are very promising candidates for the development of future low-power, high-capacity, non-volatile data storage devices.
Stability of chiral structures in magnetic nanodisks
Hans Fangohr, Weiwei Wang (Investigators), David Cortes
This project is aimed to study the stability of skyrmionic and helical equilibrium states in magnetic nanodisks, using computational simulations.
People
Professor, Engineering Sciences (FEE)
Reader, Optoelectronics Research Centre
Lecturer, Mathematics (FSHS)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Civil Engineering & the Environment (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Administrative Staff, Research and Innovation Services
Administrative Staff, Civil Engineering & the Environment (FEE)
Alumnus, University of Southampton
Alumnus, Ningbo University
External Member, Imperial College London
External Member, University of Southampton