Design
For queries about this topic, contact Alexander Forrester.
View the calendar of events relating to this topic.
Projects
Complexity in Modelling Electric Marine Propulsive Devices
Suleiman Sharkh, Neil Bressloff, Hans Fangohr (Investigators), Aleksander Dubas
This project involves the simulation of turbulent flow around a marine rim-driven thruster and the complex interaction of flow features involved through computational fluid dynamics. Following this, the optimisation of design parameters using computational fluid dynamics to calculate the objective function is performed and surrogate modelling utilised to estimate optimum design configuration.
Coronary Artery Stent Design for Challenging Disease
Neil Bressloff (Investigator), Georgios Ragkousis
In this work, a method has been setup to (i) reconstruct diseased patient specific coronary artery segments; (ii) use the new supercomputer to run many simulations of this complex problem and (iii) assess the degree of stent malapposition. The aim now is to devise a stent delivery system that can mitigate this problem
Design of Unmanned Air Vehicles
James Scanlan (Investigator), Robert Entwistle
Using computational modelling of a 3D airspace simulation environment to meet the safety and collision-avoidance requirements of the certification authorities.
Dynamics simulations for quantum feedback to steer a single-particle harmonic oscillator in non-classical states
Hendrik Ulbricht (Investigator), Ashley Setter
This PhD project is about using digital electronics to implement a parametric feedback loop to modulate the intensity of an optical trapping laser in order to stabilise/cool the centre of mass motion of a nanoparticle. It is then intended we use digital parametric feedback to drive the motion of the particle, which is essentially a quantum harmonic oscillator, into non-classical quantum states such as squeezed and number states.
Fluid Dynamics Optimisation of Rim-Drive Thrusters and Ducted Hydrokinetic Generators
Aleksander Dubas, Suleiman Sharkh (Investigators)
This is a Knowledge Transfer Partnership project is a collaboration between the University of Southampton and TSL Technology Ltd. to develop computational fluid dynamics software design tools for modelling and optimising the design of propeller thrusters and water turbine generators.
Fluid Structure Interactions of Yacht Sails
Stephen Turnock (Investigator), Daniele Trimarchi
The research is the main subject of the PhD topic. It regards the application of fluid structure interaction techniques to the domain of yacht sails simulation
Generic Operational Simulation of Civil Unmanned Air Vehicle Operations
Hans Fangohr, James Scanlan (Investigators)
This project creates a generic operational simulation of Unmanned Air Vehicle Operations. UAVs can be valued for their mission-suitability and compared against various configurations.
Multi-objective design optimisation of coronary stents
Neil Bressloff, Georges Limbert (Investigators), Sanjay Pant
Stents are tubular type scaffolds that are deployed (using an inflatable balloon on a catheter), most commonly to recover the shape of narrowed (diseased) arterial segments. Despite the widespread clinical use of stents in cardiovascular intervention, the presence of such devices can cause adverse responses leading to fatality or to the need for further treatment. The most common unwanted responses of inflammation are in-stent restenosis and thrombosis. Such adverse biological responses in a stented artery are influenced by many factors, including the design of the stent. This project aims at using multi-objective optimisation techniques to find an optimum family of coronary stents which are more resistant to the processes of in-stent restenosis (IR) and stent thrombosis (ST).
The Endogenous Formation of Economic Networks
Antonella Ianni, Seth Bullock (Investigators), Camillia Zedan
An investigation into endogenous network formation using a simple agent-based approach.
The Role of Information in Price Discovery
Antonella Ianni, Seth Bullock (Investigators), Camillia Zedan
The recent economic crisis has highlighted a continued vulnerability and lack of understanding in the financial markets. In order to overcome this, many believe that current market models must be improved. Recently, a trend towards agent-based modelling has emerged. Viewing the economy as a complex system is beginning to be seen as key to explaining certain market characteristics that were originally considered anomalies.
One of the fundamental assumptions in economics is that of information efficiency: that the price of a stock reflects its worth, that all possible information about a security is publicly known, and that any changes to price take place instantaneously. In reality, however, this is not the case.
This project considers the use of agents in modelling economic systems and demonstrates the effect of information levels on price discovery using a simple market simulation.
Today's Computation Enabling Tomorrow's Seamless Communication
Lajos Hanzo (Investigator), Varghese Thomas
Radio Over Fibre (ROF) is a communication technique that aims to gainfully amalgamate the benefits of optical and wireless communication, while keeping the system cost low. This technique would support the next generation of wireless services.
People
Professor, Engineering Sciences (FEE)
Professor, Electronics and Computer Science (FPAS)
Professor, Engineering Sciences (FEE)
Professor, Electronics and Computer Science (FPAS)
Professor, Engineering Sciences (FEE)
Professor, Engineering Sciences (FEE)
Professor, Engineering Sciences (FEE)
Professor, Physics & Astronomy (FPAS)
Senior Lecturer, Social Sciences (FSHS)
Lecturer, Engineering Sciences (FEE)
Senior Research Fellow, Geography (FSHS)
Research Fellow, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Undergraduate Research Student, Biological Sciences (FNES)
Technical Staff, iSolutions
Technical Staff, iSolutions
Administrative Staff, Research and Innovation Services
Enterprise staff, Engineering Sciences (FEE)
Enterprise staff, Engineering Sciences (FEE)
Alumnus, University of Southampton
Alumnus, Biological Sciences (FNES)
Alumnus, Mathematics (FSHS)
Alumnus, Dacolt International B.V.
Alumnus, Engineering Sciences (FEE)
External Member, University of Southampton
None, None
None, None
None, None