Lyceum
Lyceum is one of High Performance Computing facilities in the University of Southampton aimed for student projects. It is a Linux Cluster composed of the head node and 16 compute nodes, which can reach 1.3 TFlops performance.
You can find more information on getting started and available software on iSolution's Lyceum page.
Documentation and Support are available for registered users
For queries about this topic, contact Elena Vataga.
View the calendar of events relating to this topic.
Projects
Adding social ties to the Schelling model
Seth Bullock, Sally Brailsford (Investigators), Elisabeth zu-Erbach-Schoenberg
The Schelling model is an abstract model for segregation in
a spatially arranged population. We extended the traditional model by the addition of a dynamic social network. The social network influences the spatial dynamics of agents moving on the grid by changing the agents’ evaluation of their neighbourhood. In turn, the spatial arrangement influences the change of the social network.
Assessment of the performance of novel RANS and hybrid turbulence models on the flow around a cylinder
Manuel Diaz Brito
The turbulent flow around a circular cylinder is a widely studied problem in fluid dynamics. At a certain characteristic Reynolds numbers the development of a turbulent wake occurs simultaneously with separation of the laminar boundary layer. The mechanisms defining this critical flow state are very complex to predict computationally. In this project the suitability of novel non-linear eddy viscosity closures and a hybrid Flow Simulation Methodology formulation to face these massively separated flows is studied. The flow predicting capabilities of the baseline EASM, ?-?-EASM and FSM-?-?-EASM tested are contrasted with the industrial renowned k-?-SST turbulence model. In the visualisation of the results it is evident that the ?-?-EASM has greater flexibility estimating the components of the Reynolds stresses with respect to the baseline EASM and the k-?-SST. Although dome differences are observed, the prediction of the critical flow around a cylinder is not accurately achieved by any of these RANS models, but the FSM-?-?-EASM shows great resemblance with the validation data, demonstrating capabilities of resolving very complex flow phenomena with minimum user input if the computational grid is fine enough. In order to demonstrate even greater advantages of non-linear models it was postulated that the addition of a streamwise impinging vortex hitting the leading edge of the cylinder would make the flow field fully three-dimensional. First attempts were tried in this route but time constraints limited the ultimate scope of the present work.
Complex Systems Simulations Centre for Doctoral Training
Jonathan Essex, Seth Bullock, Hans Fangohr (Investigators)
The centre for doctoral training brings together students from a variety of backgrounds, ranging from mathematics, physics and chemistry to oceanography, geography, biology, computer science, and engineering. Students carry out a four-year programme combining taught courses with a PhD project.
Designer 3D Magnetic Mesostructures
Hans Fangohr (Investigator), Matteo Franchin, Andreas Knittel
A new electrodeposition self-assembly method allows for the growth of well defined mesostructures. This project's aim is to use this method in order to fabricate supraconducting and ferromagnetic mesostructures. Numerical methods based on well-established models are used in order to characterise the grown structures.
Hybrid RANS/LES methods
Richard Sandberg (Investigator), Markus Weinmann
Novel hybrid RANS/LES methods are developed for more accurate and efficient simulation of flow over complex geometries.
Nonequilibrium Dynamics of Atomic Gases in Optical Lattices
Sophie Marika Reed
Many-body, quantum systems exhibit emergent properties which allows for quantum events to influence properties on macroscopic scales. Such emergent properties are studied using stochastic phase-space techniques.
Scalability of Energy Efficient Routing Algorithms in Wireless Sensor Networks
Geoff Merrett (Investigator), Davide Zilli
This project compares two broad classes of routing algorithms for Wireless Sensor Networks, message flooding and single path, by means of a simulation model. In particular, we want to understand how the two scale in terms of energy efficiency on large networks of sensors.
Today's Computation Enabling Tomorrow's Seamless Communication
Lajos Hanzo (Investigator), Varghese Thomas
Radio Over Fibre (ROF) is a communication technique that aims to gainfully amalgamate the benefits of optical and wireless communication, while keeping the system cost low. This technique would support the next generation of wireless services.
People
Professor, Management (FBL)
Professor, Electronics and Computer Science (FPAS)
Professor, Chemistry (FNES)
Professor, Engineering Sciences (FEE)
Professor, Electronics and Computer Science (FPAS)
Professor, Engineering Sciences (FEE)
Reader, Electronics and Computer Science (FPAS)
Senior Lecturer, Geography (FSHS)
Lecturer, Biological Sciences (FNES)
Lecturer, Electronics and Computer Science (FPAS)
Lecturer, Engineering Sciences (FEE)
Research Fellow, Ocean & Earth Science (FNES)
Research Fellow, Engineering Sciences (FEE)
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Mathematics (FSHS)
Postgraduate Research Student, University of Southampton
Postgraduate Research Student, Engineering Sciences (FEE)
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Postgraduate Research Student, Electronics and Computer Science (FPAS)
Postgraduate Research Student, Management (FBL)
Undergraduate Research Student, Biological Sciences (FNES)
Technical Staff, iSolutions
Technical Staff, iSolutions
Administrative Staff, Research and Innovation Services
Enterprise staff, iSolutions
Alumnus, University of Southampton
Alumnus, Pall Corporation
Alumnus, Engineering Sciences (FEE)
Alumnus, Industry
Alumnus, University of Southampton
Alumnus, Dacolt International B.V.
External Member, Imperial College London
External Member, NAG Ltd, Oxford
External Member, University of Southampton
None, None
None, None